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Abstract

In this paper we study the stability of the zero solution of difference equa-
tions with variable delays. In particular we consider the scalar delay equation

Az(n) = —a(n)x(n — 7(n))

and its generalization

N

Ax(n) = =) aj(n)a(n —7;(n)).

J=1

Fixed point theorems are used in the analysis.
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1 Introduction
Let R denote the real numbers, RT = [0,00), Z the integers, Z~ the negative

integers, and Z* = {x € Z | x > 0}. In this paper we study the asymptotic
stability of the zero solution of the scalar delay equation

Az(n) = —a(n)z(n — 7(n)) (1.1)
and its generalization
Az(n) = — Z a;(n)z(n — 7;(n)). (1.2)

where a,a; : ZT — R and 7,7; : Z+ — Z* with n — 7(n) — oo as n — cc.
For each ng, define m;(ng) = inf{s —7;(s) : s > ng}, m(ng) = min{m;(ny) : 1 <
j < N}. Note that (1.2) becomes (1.1) for N = 1.

Recently, in [11], Raffoul studied the stability of the zero solution of (1.1) when
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7(n) = r. Our objective in this research is to generalize the stability results in [11]
to (1.2) for variable 7;(n)’s. For more on stability using fixed point theory we refer

to [1],[7],[9],[11],[12] and for basic results on difference calculus we refer to [2] and
[8] We also refer to [3],[4],[5],[6] and [10] for other results on stability for difference

equations.

Remark 1.1 In [7], the author and Islam showed that the zero solution of the
equation

z(n+1) =b(n)x(n) + a(n)x(n — 7(n))

1s asymptotically stable with one of the assumptions being that
H b(s) — 0 asn — oo. (1.3)

However, as pointed out in [11], condition (1.3) cannot hold for (1.2) since b(n) =
1, for all n € Z. The results we obtain in this paper overcome the requirement of
(1.3).

Let D(ng) denote the set of bounded sequences 1 : [m(ng), ng] — R with the
maximum norm ||.||. Also, let (B, ||.||) be the Banach space of bounded sequences
¢ : [m(ng), 00) — R with the maximum norm. Define the inverse of n — 7;(n) by
gi(n) if it exists and set

Qn) = > g (n))
where

For each (ng, 1) € Z* x D(ng), a solution of (1.2) through (ng, ) is a function
x : [m(ng),no + ) — R™ for some positive constant o > 0 such that z(t) satisfies
(1.2) on [ng, no+a) and z(n) = ¢ (n) for n € [m(ngy), ng]. We denote such a solution
by x(n) = x(n, ng, ). For a fixed ng, we define

[[[] = max{|y(n)] : m(ng) <n < no}.
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2 Stability

In this section we obtain conditions for the zero solution of (1.2) to be asymptoti-
cally stable.
We begin by rewriting (1.2) as

Az(n) = = a;(g;(n)x(n) + A, ) z_: a;(g;(s))x(s) (2.1)
Jj=1 J=1 s=n—7j(n)

where A,, represents that the difference is with respect to n. If we let

N

> bigi(n) =1- Zaj(gj(n)),

j=1
then (2.1) is equivalent to
N

w(n+1) =Y bi(g;(n)x(n) + A, ) a;(g;(s))x(s) (2.2)

j=1 J=1 s=n—7;(n)

Lemma 2.1 Suppose that Q(n) # 0 for all n € Z* and the inverse function g;(n)
of n —7j(n) exists. Then x(n) is a solution of (2.2) if and only if

o) = (20 -3 Y ae@1@) [[e0+Y Y o))
j=1 s=ng—7;(no) 5=n0 J=1 s=n—r;(n)
Y (el [T ey X algm)e). n=n
s=ng k=s+1 J=1 u=s—7;(s)

Proof. By the variation of parameters formula we obtain

k—1

a;(g5()a(s)) . (2.3)
75 (k)

—k—7:

n—1 n—1

z(n) = x(ng) 1:[ Q(s) + Z (H Q(s)Ay, Z

s=ng k=0 =
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Using the summation by parts formula we obtain

e > ale)ls)
s=ng J=1 s=ng—7j(no)

S (@l TT ey Y alomew). @4
s=ng k=s+1 J=1 u=s—7;(s)

Substituting (2.5) into (2.3) gives the desired result. This completes the proof of
Lemma 2.1.
We next state and prove our main results.

Theorem 2.1 Suppose that the inverse function g;j(n) of n — 7j(n) exists, and
assume there exists a constant o € (0,1) such that

> ¥ lostosts

Jj=1 s=n—7;(n

§< |’HQ ’Z Z \a]gg D) <a.  (25)

Moreover, assume that there exists a positive constant M such that

\ﬁ@<s>\§M

s=no

Then the zero solution of (1.2) is stable.

Proof. Let ¢ > 0 be given. Choose d > 0 such that
(M + Ma)d + ae <e.
Let ¢ € D(ng) such that [¢)(n)| < 4. Define
S={p e B:on)=1vn)ifn e [m(n),nol, llell < €}.
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Then (S, ||.||) is a complete metric space where, ||.|| is the maximum norm.

Define the mapping P : S — S by
(Pe)(n) =1(n) for n € [m(no), no]

and
PA@ = (6= S a6ewe) I e
J=1 s=ng—;(no) s$=no

FY Y e

J=1 s=n—7;j(n)

S H Ay S wlpp). @)
s=ng kest1 J=1 u=s—1,(s)

(Pe)(m)| < M3+ Mad+{ " a;(95(5))

s=ng k=s+1 J=1 u=s—7;(s)
< (M+ Ma)d + e
< e

Thus P maps from S into itself. We next show that P is a contraction. Let {,n € S.
Then

PO® — PWI<{Y 3 ol

Jj=1 s=n—7;(n)

5 (n-ewn| IT aw|y ¥ Tt ) Hic =

s=ng k=s+1 71=1 y=s— TJ

< afl¢ =l

This shows that P is a contraction. Thus, by the contraction mapping principle,
P has a unique fixed point in S which solves (1.2) and for any ¢ € S,||Py|| < e.
This proves that the zero solution of (1.2) is stable.
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Theorem 2.2 Assume that the hypotheses of Theorem 2.1 hold. Also assume that

1:[ Q(k) — 0asn — co. (2.7)

k=ng
Then the zero solution of (1.2) is asymptotically stable.

Proof. We have already proved that the zero solution of (1.2) is stable. Let
1 € D(ng) such that |¢)(n)| < ¢ and define

S*={p e B:pn)=1(n)ifn € [m(ng),no, ||| <eand p(n) — 0, asn — oo}.

Define P : S* — S* by (2.6). From the proof of Theorem 2.2, the map P is a
contraction and for every ¢ € S*, ||(Py)|| < e.

We next show that (Py)(n) — 0 as n — oo. The first term on the right side
of (2.6) goes to zero because of condition (2 7). It is clear from (2.5) and the fact
that ¢p(n) — 0 as n — oo that E] S () y1aj(g;(s)lle(s)] — 0 as n — oo.

Now we show that the last term on the right side of (2.6) goes to zero as
n — oo. Since ¢(n) — 0 and n — 7j(n) — 0o as n — oo, for each €; > 0, there
exists a N; > ng such that s > N; implies |¢(s — 7;(s))| < € for j =1,2,3,...,N.
Thus for n > Ny, the last term, I3 in (2.6) satisfies

Ll = \ni(u— T ey Z aj(g5(w)e(w))|
s=no k=s+1 J=1 u=s— TJ(s)

-
E
@
ﬁ
g

()llg(w))

$=n0 k=s+1 =1 u=s— T](S
o5 (n-ewi| T1 ew|Y S ot Do)
s=N; k=s+1 J=1 u=s—7j(s
Ni—1
< max Jo(o) 3 (I~ |}H@ }ZZ a5(0;(w))])

ozm{no) $=no k=s+1 J=1 u=s—7;(s)

n—1
+€IZ< "HQ ’Z Z (g5 (u )

s=N1 k=s+1 J=1 u=s—1;(s)

By (2.7), there exists Ny > Nj such that n > Ny implies

Ni—1
max ool Y- (In-el| T ew]> ¥ leslo,)]) <
a2m(no s=ng k=s+1 J=1 u=s—7j(s
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Apply (2.5) to obtain |[3] < € + g < 2¢;. Thus, I3 — 0 as n — oo. Hence
(Pp)(n) — 0 as n — oo, and so Py € S*.

By the contraction mapping principle, P has a unique fixed point that solves

(1.2) and goes to zero as n goes to infinity. Therefore, the zero solution of (1.2) is
asymptotically stable.
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